UT201/202

Operating Manual

Digital Clamp Multimeter

Overview

This Operating Manual covers information on safety and cautions. Please read the relevant information carefully and observe all the Warnings and Notes strictly.

∠! Warning

To avoid electric shock or personal injury, read the "Safety Information" and carefully before using the Meter.

Model UT201/202(hereafter referred to as "the Meter") is 2000-count stable, safe and reliable digital clamp multimeter. It is designed with large-scale integrated circuits and A/D converter as the core as well as the overload protection and novel structure, which make it a superb tool for electricians.

The Meter can measure AC/DC voltage, AC current, resistance, temperature(\mathbb{F}/\mathbb{C}), diode, continuity and

Unpacking Inspection

Open the package case and take out the Meter. Check the following items carefully for any missing or damaged

Item	Description	Qty
1	English Operating Manual	1 pc
2	Test Lead	1 pair
3	Point Contact Temperature Probe (UT202 only)	1 pc
	(OTZOZ OHIY)	
4	1.5V Battery (AAA)	2 pcs

In the event you find any missing or damaged part, please contact your dealer immediately.

Safety Information

This Meter complies with the standard IEC61010: Pollution Degree 2, Overvoltage Category (CAT. II 600V, CAT. III 300V) and Double Insulation.

CAT. II: Local level, appliance, PORTABLE EQUIPMENT etc., with smaller transient overvoltages than CAT. III. CAT. III: Distribution level, fixed installation, with smaller transient overvoltages than CAT. IV

Use the Meter only as specified in this operating manual, otherwise the protection provided by the Meter may be impaired.

In this manual, a Warning identifies conditions and actions that pose hazards to the user, or may damage the Meter or the equipment under test

A Note identifies the information that user should pay attention to

⚠Warning

To avoid possible electric shock or personal injury, and to avoid possible damage to the Meter or to the equipment under test, adhere to the following rules:

- Before using the Meter inspect the case. Do not use the Meter if it is damaged or the case (or part of the case) is removed. Look for cracks or missing plastic. Pay attention to the insulation around the connectors.
- Inspect the test leads for damaged insulation or exposed metal. Check the test leads for continuity. Replace damaged test leads with identical model number or electrical specifications before using the Meter.
- Do not apply more than the rated voltage, as marked on the Meter, between the terminals or between any terminal and grounding. If the value to be measured is unknown, use the maximum range and reduce the range step by step until a

- satisfactory reading is obtained
- When measurement has been completed, disconnect test leads from the circuits under test, remove the testing leads away from the input terminals of the Meter and turn the Meter power off.
- The rotary switch should be placed in the right position and no any changeover of range shall be made during measurement to prevent damage
- To avoid electric shock, do not carry out the measurement when the Meter's back case and battery compartment are not closed
- Do not input higher than 600V between the Meter's terminals and the grounding to avoid electric shock and damages to the Meter.
- When the Meter working at an effective voltage over 60V in DC or 30V rms in AC, special care should be taken for there is danger of electric
- Use the proper terminals, function, and range for your measurements.
- Do not use or store the Meter in an environment of high temperature, humidity, explosive, inflammable and strong magnetic field. The performance of the Meter may deteriorate after
- When using the test leads, keep your fingers behind the finger guards.
- Disconnect circuit power and discharge all high -voltage capacitors before testing resistance, continuity and diode.
- Replace the battery as soon as the battery indicator □ appears. With a low battery, the Meter might produce false readings that can lead to electric shock and personal injury.
- When servicing the Meter, use the replacement parts with the same model or identical electrical specifications.
- To avoid any damage to the meter or any accident, do not alter the internal circuit of the
- Soft cloth and mild detergent should be used to clean the surface of the Meter when servicing. No abrasive and solvent should be used to prevent the surface of the Meter from corrosion, . damage and accident.
- The Meter is suitable for indoor use.
- Turn the Meter off when it is not in use and take out the battery when not using for a long time.
- Constantly check the battery as it may leak when it has been used for some time, replace the battery as soon as leaking appears. A leaking battery will damage the Meter

International Electrical Symbols

~	AC (Alternating Current).		
	DC (Direct Current).		
=	AC or DC.		
÷	Grounding.		
	Double Insulated.		
≘	Deficiency of Built-In Battery		
•1))	Continuity Test.		
→ Diode.			
-I(- Capacitance Test			
=	Fuse.		
\triangle	Warning. Refer to the Operating Manual.		
5	Danger of High Voltage		
CE	Conforms to Standards of European Union.		

The Meter Structure (See Figure 1 Input Terminals LCD Display **Functional Buttons**

- Rotary Switch
- Trigger: Push/release it
- to open/close the clamp jaw. Hand Guards: to protect user's hand from touching the
- dangerous area. Transformer Jaws: designed to pick up the AC current flowing through the conductor. It could transfer current

Rotary Switch

Below table indicated for information about the rotary switch positions

Rotary Switch Position	Function		
OFF	Power is turned off.		
v≂	AC/DC voltage measurement.		
→	→ : Diode test.		
•1))	•ii) : Continuity test.		
Ω	Ω : Resistance measurement.		
°C°F	Temperature measurement (UT202 only)		
A~	AC current measurement range from 0.001A to 400.0A		

Functional Buttons

Below table indicated for information about the functional button operations.

HOLD	Press HOLD Hoto enter and exit the Hold mode in any mode, the Meter beeps. Press and hold HOLD Houtton while turning on the Meter to display full icons.
MAX	Press MAX to start recording and updating of maximum values.
SELECT	Press SELECT button to switch between Ω \rightarrow and $^{\circ}C^{\circ}F$.

The Effectiveness of Functional Buttons

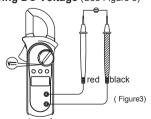
Not every functional buttons can be used on every rotary switch positions. Below two tables describe on which rotary position functional buttons can be valid accordingly. Model: UT201


Rotary Switch Positions	Functional Buttons		
	SELECT	MAX	HOLD⊞
v 	N/A	•	•
v~	N/A	•	•
•n) Ω	N/A	N/A	• '
-1) -> I-	•	N/A	•
A ∼ 2/20A	N/A	•	•
A~ 200/400A	N/A	•	•

Rotary Switch Positions	Functional Buttons				
	SELECT	MAX	HOLD⊞		
v 	N/A	•	•		
v~	N/A	•	•		
-n) Ω ->	•	N/A	• '		

	SELECT	MAX	HOLD⊞
v 	N/A	•	•
v~	N/A	•	•
•n) Ω ->	•	N/A	• '
°F°C(K-Type)	•	N/A	•
A ∼ 2/20A	N/A	•	•
A∼ 200/400A	N/A	•	•

Display Symbols (See Figure 2)


Model: UT202

No.	Symbol	Description		
1	AC	Indicator for AC voltage or current		
2	DC	Indicator for DC voltage		
		The battery is low.		
2				
3	₿	shock or personal injury, replace		
		the battery as soon as the battery		
		indicator appears.		
4	AUTO	The Meter is in the auto range mode in which the Meter automatically selects the range with the best resolution.		
5	*	Test of diode.		
6	•1))	The continuity buzzer is on.		
7	MAX	Maximum reading displayed		
8	H	Date hold is active.		
9	°C°F	The unit of temperature:		
		°C: Centigrade temperature		
		°F: Fahrenheit temperature		
		Ω : Ohm. The unit of resistance.		
10	$Ω$, $\mathbf{k}Ω$, $\mathbf{M}Ω$	$k\Omega$: kilohm.1 x 10 ³ or 1000 ohms.		
		MΩ: Megaohm. 1 x 10^6 or 1,000,000 ohms.		
11	Α	, ,		
		Amperes (amps). The unit of current.		
12	mV, V	Volts. The unit of voltage.mV: Millivolt. 1x10-3 or 0.001 volts		
13	_	Indicates negative reading		
14	OL	The input value is too large for the selected range		

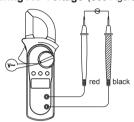
Measurement Operation

A. Measuring DC Voltage (See Figure 3)

⚠ Warning

To avoid harms to you or damages to the Meter from eletric shock, do not attempt to measure voltages higher than 600V AC/DC, although readings may be

The DC Voltage ranges are:


200.0mV, 2.000V, 20.00V, 200.0V and 600V.

- To measure DC voltage, connect the Meter as follows: 1 Insert the red test lead into the •••) → VO terminal
- and the black test lead into the COM terminal. Set the rotary switch to V....
- 3. Connect the test leads across with the object being measured.

The measured value shows on the display.

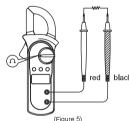
- In each range, the Meter has an input impedance of $10M\Omega$. This loading effect can cause measurement errors in high impedance circuits. If the circuit impedance is less than or equal to $10k\Omega$, the error is negligible (0.1 or less).
- When DC voltage measurement has been completed, disconnect the connection between the testing leads and the circuit under test and remove testing leads from the input terminals

B. Measuring AC Voltage (See Figure 4)

⚠Warning

To avoid harms to you or damages to the Meter from eletric shock, do not attempt to measure voltages higher than 600V AC/DC, although readings may be

The AC Voltage ranges are: 2.000V, 20.00V, 200.0V and 600V.


To measure AC voltage, connect the Meter as follows:

- Insert the red test lead into the $\bullet \bullet \bullet \bullet \to \bullet \bullet \bullet \bullet$ terminal and the black test lead into the **COM** terminal.
- Set the rotary switch to V~
- Connect the test leads across with the object being measured.

The measured value shows on the display.

- In each range, the Meter has an input impedance of 10M Ω . This loading effect can cause measurement errors in high impedance circuits. If the circuit impedance is less than or equal to $10k\Omega$, the error is negligible (0.1 or less).
- When AC voltage measurement has been completed, disconnect the connection between the testing leads and the circuit under test and remove testing leads from the input terminals

C.Measuring Resistance (See Figure 5)

⚠ Warning

To avoid harms to you, do not attempt to input voltages higher than 60V DC or 30V rms AC

To avoid damages to the Meter or to the devices under test, disconnect circuit power and discharge all the high-voltage capacitors before measuring

The resistance ranges are:

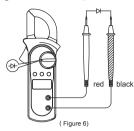
200.0Ω, 2.000kΩ, $\tilde{2}$ 0.00kΩ,200kΩ,2.000MΩ and 20.00MΩ. To measure resistance, connect the Meter as follows:

- 1. Insert the red test lead into the \bullet) \rightarrow \bullet \bullet \bullet \bullet \bullet the black test lead into the COM terminal. 2. Set the rotary switch to Ω •••) +it, defaults at resistae(Ω)
- -nce mod or press **SELECT** button to select Ω mode. 3. Connect the test leads across with the object being

measured. The measured value shows on the display.

The test leads can add 0.1Ω to 0.3Ω of error to resistance measurement

• For high-resistance measurement (>1M Ω), it is normal taking several seconds to obtain a stable reading.


 If Ω reading with shorted test leads is not ≤0.5Ω, check for loose test leads, wrong function selected, or enabled data hold function.

 The LCD displays OL indicating open-circuit or the tested resistor value is higher than the maximum range of the Meter.

- Resistance measurement is default to auto range mode.
- Measuring the tested object that is already removed from the in-line circuit can help to obtain a more accu
- When resistance measurement has been completed. disconnect the connection between the testing leads and the circuit under test and remove testing leads

from the input terminals

D.Testing Diodes (See Figure 6)

⚠ Warning

To avoid damages to the Meter or to the devices under test, disconnect circuit power and discharge all the high-voltage capacitors before testing diodes.

Use the diode test to check diodes, transistors, and other semiconductor devices. The diode test sends a current through the semicondutor junction, then measure the voltage drop across the junction. A good silicon junction drops between 0.5V and 0.8V.

To test the diode out of a circuit, connect the Meter as

- 1. Insert the red test lead into the •••• ★ ▼ X terminal and the black test lead into the COM terminal.
- 2. Set the rotary switch to ⋈→)→ and press SELECT button to select -- measurement mode.
- 3. For forward voltage drop readings on any semiconductor component, place the red test lead on the component's anode and the black test lead on the component's cathode.

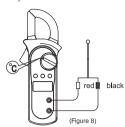
Note

- In a circuit, a good diode should still produce a forward voltage drop reading of 0.5V to 0.8; however, the reverse voltage drop reading can vary depending on the resistance of other pathways between the probe tips
- Connect the test leads to the proper terminals as said above to avoid error display.
- The LCD will display OL indicating either open circuit or wrong polarity connection.
- The unit of diode is volt (V), displaying the forward voltage drop readings.
- Measuring the tested object that is already removed from the in-line circuit can help to obtain a more accurate reading.
- When diode testing has been completed, disconnect the connection between the testing leads and the circuit under test and remove testing leads from the

E.Testing for Continuity (See Figure 7)

⚠ Warning

To avoid damages to the Meter or to the devices under test, disconnect circuit power and discharge all the high-voltage capacitors before measuring continuity.


To test for continuity, connect the Meter as follows 1. Insert the red test lead into the $\bullet \bullet \bullet$ terminal and

- the black test lead into the COM terminal. 2. Set the rotary switch to $\Omega \cdot \mathbb{I}$ and press **SELECT**
- button to select measurement mode. 3. The buzzer sounds if the resistance of a circuit under
- test is less than 50Ω . 4. The buzzer may or may not sounds if the resistance
- of a circuit under test is between 50 Ω to 120 Ω . 5. The buzzer does not sound if the resistance of a
- circuit under test is higher than 120Ω

- The buzzer beeps once when pressing any buttons at any rotary switch positions except at 2/20A positions if the button is valid. If the button is not valid, it does not beep. At 2/20A rotary switch position, the buzzer is set not to beep.

 The buzzer beeps 5 times continuously on around
- 1 minute before entering the sleep mode. When it is just before entering the sleep mode, it will have one long beep to warn you.
- \bullet The LCD displays OL indicating the circuit being tested is open.
- When continuity testing has been completed, disconnect the connection between the testing leads and the circuit under test and remove testing leads from the input terminals

F. Measuring Temperature (UT202 Only) (See Figure 8)

The temperature measurement ranges are -40°C~1000°C and -40°F~1832°F

- To measure temperature, connect the Meter as follows: 1. Insert the red temperature probe into the $\cdot \cdot \cdot \cdot \rightarrow V\Omega$ terminal and the black temperature probe into the COM
- 2. Set the rotary switch to °F°C and press **SELECT** button to select °F or °C measurement mode. °C measurement mode is default.
- 3. Place the temperature probe to the object being measured The measured value shows on the display.

Note

- The Meter automatically displays the temperature value inside the Meter when there is no temperature probe connection.
- When temperature measurement has been completed disconnect the connection between the temperature probe and the circuit under test, and remove the temperature probe away from the input terminals of

G. Measuring AC Current (See Figure 9)

∠! Warning

To avoid electric shock, never measure current while the test leads are inserted into the input terminals and disconnect test leads and tested circuit connection. Never attempt an in-circuit current measuremnet where the open-circuit voltage between the circuit and the ground is greater than 600V

Use proper function and range for the measurement. The measuremnet ranges of current are: 2.000A, 20.00A, 200.0A and 400A.

To measure current, do the following:

- 1. Set the rotary switch to 2/20A~or 200/400 A~
- 2. Press the lever to open the transformer laws. 3. Center the conductor within the transformer jaw.
- then release the Meter slowly until the transformer jaw is completely closed, Make sure the conductor to be tested is placed at the center of the transfor -mer jaw, otherwise it will casue deviation.
- 4. The measured value shows on the display, it is a effective value of sine wave (mean value response).

- To obtain accurate reading, measure only one conductor at each time.
- When current measurement has been completed, disconnect the connection between the conductor under test and the jaw, and remove the conductor away from the transformer jaw of the Meter

Sleep Mode

To preserve battery life, the Meter automatically turns off if you do not turn the rotary switch or press any button for around 15 minutes.

The Meter can be activated by turning the rotary switch or pressing any button with the following conditions:

- 1) When the Meter enters Sleep Mode at temperature functions of Model: UT202, the Meter cannot be activated by turning the rotary switch to AC current
- 2) Pressing any button must be according to" The Effectiveness of Functional Buttons" section
- 3) The Hold function will be cancelled if the Meter is activated by pressing the HOLD button. To disable the Sleep Mode function, press and hold **HOLD** button while turning on the Meter

Specifications

- 1. General Specifications:
- Maximum voltage including transient overvoltage between any terminals and grounding: 500V rms
- Display: Maximum display 1999
- Auto Polarity Display
- Overloading Low Battery Indication
- : Display OL or –OL : Display 🚅
- Measurement Speed : Updates 3 times/second.
- Measuremnet Deviation : When the conductor being meaured is not placed in a correct position during AC current measurement, it will cause ±1% reading deviation.

- Drop Test
- 1 meter drop test passed. : 28mm diameter.
- Max. Jaw Opening Tested Max
- Current conductor size : 26mm diameter.
- 2pcs of 1.5V battery (AAA) Power Battery Life typically 150hours (alkaline
- battery)
- Sleep Mode (can be disabled) Dimensions (H x W x L): 30mm x 76mm x 208mm.
- Weight Approximate 260g (battery included)
- 2. Environmental Restrictions:
- The Meter is suitable for indoor use Altitude
- : Operating: 2000m Storage: 10000m Safety/ Compliances : IEC 61010 CAT.II 600V,
 - CAT.III 300V over voltage and double insulation.
- Temperature and Humidity

Operating: 0°C~30°C (≤75% R.H);30°C~40°C (≤70%R.H); 40°C~50°C (≤45%R.H); Storage: -20°C~+60°C (≤75%R.H)

3. Accuracy Specifications

Accuracy: ±(a% reading + b digits), guarantee for 1 year Operating temperature: 23°C ± 5°C Relative humidity: ≤75%R.H

Temperature coefficient: 0.1x(specified accuracy)/1°C

A. AC Voltage: Auto Ranging

Range	Resolution	Accuracy	Overload Protection
2.000V	1mV		
20.00V	10mV	±(1.2%+5)	600V rms
200.0V	100mV		
600V	1V	±(1.5%+5)	

Remarks

- Input impedance: $10M\Omega$ <100pF
- Display sinewave RMS(AVG response)
- Frequency response: 40Hz~1kHz.
- To adjust reading in accordance with effective value

B. DC Voltage: Auto Ranging

Range	Resolution	Accuracy	Overload Protection
200.0mV	0.1mV	±(0.8%+3)	
2.000V	1mV		600V rms
20.00V	10mV	±(0.8%+1)	000 11110
200.0V	100mV		
600V	1V	±(1%+3)	

Remarks: Input impedance: $10M\Omega$.

C. Resistance: Auto Ranging

		, ,	Overland
Range	Resolution	Accuracy	Overload Protection
200.0Ω	100mΩ	±(1.2%+2)	
$2.000k\Omega$	1Ω		
20.00 k Ω	10Ω	±(1%+2)	600√p
200.0kΩ	100Ω		· ·
$2.000M\Omega$	1kΩ	±(1.2%+2)	
$20.00M\Omega$	10kΩ	±(1.5%+2)	

Remarks: Input impedance: 10MΩ

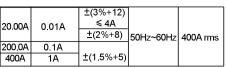
D. Continuity Test

Range	Resolution	Accuracy	Overload Protection
-1))		Around≤50Ω the buzzer beeps	600Vp

- Open circuit voltage approximate 0.45V.
- The buzzer may or may not beeps when the resistance of a circuit under test is between 50 Ω and 120 Ω The buzzer may not beep when the resistance of a circuit under test is greater than 120Ω .

E. Diode Test

Ran	ge	Resolution		Overload Protection
→	•	1mV	Display approximate forward voltage drop : 0.5V~0.8V	600Vp


Remarks: Open circuit voltage approximate 1.48V.

F. Temperature (UT202 Only):

Range	Resolution	Accuracy	Overload Protection
-40~1000°C	1°C	-40~0°C: ±(3%+9) 0~400°C: ±(1%+7) 400~1000°C: ±(2%+10)	600Vp
-40°F~1832°F	1°F	-40~32°F: ±(3%+10) 32°F~752°F: ±(1%+8) 752°F~1832°F: ±(2%+18)	

G. AC Current: Auto Ranging

	ıtion A	ccuracy	Frequency Response	Overload
	111011 / 11	/ toouracy	Response	Protection
2.000A 0.001	1A <1/	A(4%+40) A(3%+30)	50Hz~60Hz	400A rms

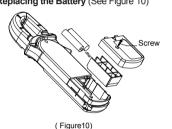
Remarks

Displays sinewave RMS (AVG response)

To adjust reading in accordance with RMS value

Maintenance

This section provides basic maintenance information including battery replacement instruction.


⚠Warning

Do not attempt to repair or service your Meter unless you are qualified to do so and have the relevant calibration, performance test, and service information. To avoid electrical shock or damage to the Meter, do not get water inside the case.

A. General Service

- Periodically wipe the case with a damp cloth and mild detergent. Do not use abrasives or solvents
- To clean the terminals with cotton bar with detergent, as dirt or moisture in the terminals can affect readings
- Turn the Meter power off when it is not in use.
- Take out the battery when it is not using for a long time. • Do not use or store the Meter in a place of humidity, high temperature, explosive, inflammable and strong magnetic field.

B. Replacing the Battery (See Figure 10)

⚠Warning

To avoid false readings, which could lead to possible electric shock or personal injury, replace the battery as soon as the battery indicator " # " appears.

Make sure the transformer jaw and the tets leads are disconected from the circuit being tested before opening the case bottom.

To replace the battery:.

- 1. Turn the Meter off and remove all the connections from the input terminals
- 2. Turn the Meter's case top down.
- 3. Remove the screw from the battery compartment, and separate the battery compartment from the case 4. Remove the old battery from the battery compartment.
- 5. Replace the battery with 2pcs of new 1.5V (AAA) battery. 6. Rejoin the case bottom and the battery compartment, and reinstall the screw

** FND **

This operating manual is subject to change without notice

UNI-T

UNI-TREND TECHNOLOGY (CHINA) CO., LTD.

No6, Gong Ye Bei 1st Road, Songshan Lake National High-Tech Industrial Development Zone, Dongguan City, Guangdong Province, China Tel: (86-769) 8572 3888 http://www.uni-trend.com